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The modal analysis of linear prototypical serpentine belt drive systems is
performed in this study. The entire system is divided into two subsystems: one
with a single belt and its motion is not coupled to the rest of the system in the
linear analysis; the other with the remaining components. The explicit exact
characteristic equation for eigenvalues is derived, which does not use the
iteration approach. This characteristic equation can provide insight concerning
the e�ect of design parameters on natural frequencies of the system. The
response of serpentine belt drive systems to arbitrary excitations is obtained as
a superposition of orthogonal eigenfunctions. The exact solution without using
eigenfunction expansion is derived when the excitations are non-resonance
harmonic. This explicit expression is particularly useful in the direct
perturbation analysis of the corresponding non-linear problems.
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1. INTRODUCTION

The dynamic analysis of the whole serpentine belt drive system is a challenging
subject and it has been investigated for only 15 years. Two distinct types of
system vibrations exist in belt drive systems: (1) transverse vibrations in various
belt spans and (2) rotational vibrations of pulleys with the belt spans serving as
coupling springs.
Transverse vibrations of belt spans are an example of an axially moving

material which has been investigated extensively. For linear vibration analysis,
Skutch [1] ®rst determined the natural frequencies of a moving string by
superposition of two waves propagating in opposite directions. Archibald and
Emslie [2] considered the same problem but derived the equations using a
variational approach. The classical modal analysis, which is applied to the linear
non-translating string model, is not directly applicable to linear axially moving
strings since the generalized co-ordinates in an eigenfunction expansion remain
coupled. Wickert and Mote [3] modi®ed the classical modal analysis method by
casting the equations of motion for a travelling string into a canonical, ®rst
order form that is de®ned by one symmetric and one skew-symmetric matrix
differential operator. When the equations of motion are represented in this form,
the eigenfunctions are orthogonal with respect to each other. The response of
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axially moving materials to arbitrary excitation and initial conditions can be
represented in closed-form. The earliest calculation on the fundamental period of
autonomous non-linear transverse vibrations of an axially moving tensioned
string was given by Mote [4]. In the work done by Thurman and Mote [5], a
hybrid discretization and perturbation method were employed to quantify the
speed dependence of the deviation between the linear and non-linear
fundamental periods for a broad range of amplitude and speed parameters.
Bapat and Srinivasan [6] used the method of harmonic balance to obtain
approximate results. More recently, Moon and Wickert [7] developed a modal
perturbation solution in the context of the asymptotic method of Krylov,
Bogoliubov and Mitropolsky for a continuous, non-autonomous and gyroscopic
system with geometric non-linearity.
The rotational vibrations of serpentine drive systems have been studied in

recent research. Hawker [8] investigated natural frequencies of damped drive
systems with a dynamic tensioner. This study, however, does not consider the
effect of the tensioner on either the equilibrium state or the dynamics response.
Barker et al. [9] used a Runge±Kutta method to solve a rapid acceleration±
deceleration case involving a movable Coulomb-damped tensioner arm. Hwang
et al. [10] proposed a general model for the rotational response of the entire
serpentine belt drive and applied the results to predict the onset of belt slip. For
linear viscous damping, Kraver et al. [11] developed a complex procedure to
solve both underdamped and overdamped systems.
The above works assume that the rotational and transverse motions are

uncoupled for linear systems. This is only an approximation for accessory drives
containing a dynamic tensioner while it is true for ®xed-center systems. Ulsoy et
al. [12] considered the coupling between the transverse motion of the belt and
that of the tensioner. This model captures a parametric instability mechanism
capable of causing large lateral belt vibrations due to tension ¯uctuations.
Beikmann et al. [13] developed a prototypical model (two pulleys with a
tensioner) to examine this coupling mechanism which led to new conclusions
regarding linear free vibrations. The natural frequencies and mode shapes of an
operating serpentine belt drive system were determined using analytical and
experimental methods. A two-level iteration based on Holzer's method is
employed to tackle the eigenvalue problem. Beikmann et al. [14] demonstrated
that ®nite belt stretching created a non-linear mechanism that may lead to strong
coupling between the pulley/tensioner rotational vibration and transverse belt
vibration. Using the eigensolutions obtained from linear analysis, the non-linear
vibration model was discretized and the coupled vibration response was
evaluated numerically.
In the present study, as a ®rst step to tackle the non-linear vibration analysis

of serpentine belt drive systems, modal analysis is performed for the response of
linear serpentine belt drive systems. The eigenvalues and eigenfunctions of the
linear prototypical system were calculated in reference [13] by employing the
iteration approach. Instead of using the iteration method, an explicit
characteristic equation for natural frequencies of the prototypical system is
obtained, which provides insight concerning the effects of design parameters on
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eigenvalues. The exact closed-form expressions for the dynamic response of the
system subjected to arbitrary excitations and initial conditions are given using
the eigenfunction expansion. Furthermore, for the steady state response of the
system subjected to harmonic excitation, explicit exact expressions for the
dynamic response are derived directly. These expressions will be used in the
direct perturbation analysis of non-linear systems.

2. CANONICAL FORM OF THE EQUATIONS OF MOTION

Figure 1 de®nes the prototypical model which Beikmann et al. [13] developed.
This model contains all the essential components present in automotive
serpentine drives: (1) a driving pulley, (2) a driven pulley, (3) a dynamic
tensioner and (4) a belt span ®xed transversely at both ends. Several assumptions
are made to simplify the modelling of the serpentine drive system: (1) damping is
negligible, (2) belt bending stiffness is negligible, (3) axial translation speed of the
belt, c, is constant and uniform, and (4) belt slippage is negligible.
Hamilton's Principle [13] is applied to derive the governing equations of

motion and boundary conditions. The linear equations of motion for the belt
spans are
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Figure 1. A prototypical three-pulley serpentine belt drive system.
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m�w1,tt � 2cw1,xt� ÿ Pt1w1,xx � f1�x, t�, �1�

m�w2,tt � 2cw2,xt� ÿ Pt2w2,xx � f2�x, t�, �2�

m�w3,tt � 2cw3,xt� ÿ Pt3w3,xx � F3�x, t�, �3�
with boundary conditions

w1�0, t� � 0, w1�l1, t� � w3�t� sinc1, �4�

w2�0, t� � w3�t� sinc2, w2�l2, t� � 0, �5�

w3�0, t� � 0, w3�l3, t� � 0, �6�
where w

i

is the transverse de¯ection in span i from equilibrium, m

i

is the belt
mass per unit, P

ti

is the span tractive tension component in span i at equilibrium
(P

ti

=P

oi

ÿmc
2

, where P

oi

is the total operating tension in span i), f

1

(x, t),
f

2

(x, t) and F

3

(x, t) are the external excitations, l

i

is the length of span i, w

3

(t) is
the displacement of the tensioner arm along the arc-length, c

1

and c

2

are the
alignment angles between the tensioner arm motion and the adjacent belt spans
at equilibrium, and subscripts ,x and ,t denote the partial derivative with respect
to x and t, respectively.

The linear equations of motion for the pulleys are

Pd1 ÿ Pd3 � f3�t� � m1�w1, Pd2 ÿ Pd1 � f4�t� � m2�w2, Pd3 ÿ Pd2 � f6�t� � m4�w4,

�7ÿ 9�
where wi= riyi , mi= Ji/r

2
i , and Pdi are dynamic tensions in each span, induced by

in®nitesimal pulley and tensioner arm rotations:

Pd1 � k1�w3 cosc1 � w2 ÿ w1�, Pd2 � k2�w3 cosc2 � w4 ÿ w2�, Pd3 � k3�w1 ÿ w4�,
�10ÿ 12�

in which ki=EA/li(i=1, 2, 3), E is the Young's modulus, and A is the cross-
sectional area of the belt. The linearized equation of motion for the tensioner
arm is

�ÿPt1w1,x�l1, t� �mcw1,t�l1, t�� sinc1 � �Pt2w2,x�0, t� ÿmcw2,t�0, t�� sinc2

ÿ k1�w3 cosc1 � w2 ÿ w1� cosc1 ÿ k2�w3 cosc2 � w4 ÿ w2� cosc2

ÿ �ks � kgr�w3 � f5�t� � m3�w3, �13�
where ks= kr/r

2
3, kr is the rotational stiffness of the tensioner spring, and kgr is

the geometric tensioner stiffness de®ned as

kgr � Pt1 sinc1 ÿ Pt2 sinc2

r3
, �14�

which is derived from the change of the tensioner arm displacement. Equation
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(13) couples the tensioner arm motion to the transverse motion of the adjacent

belt spans.

The modal analysis of the serpentine belt drive systems is applied to the linear

equations of motion for the four discrete elements (three pulleys and one

tensioner arm) and three continuous elements (the belt spans). It can be seen

from equations (1)±(13) that for linear analysis, the transverse vibration of span

3 and vibration of other components are decoupled. Thus, it is desirable to

divide the entire system into two subsystems: subsystem 1 which includes span 3

only and subsystem 2 which includes all the other parts of the system.

For subsystem 1, the equation of motion can be rewritten in operator form,

M3 �w3 � G3 _w3 � K3w3 � F3, �15�
where

M3 � m, G3 � 2mc
@

@x
, K3 � ÿPt3

@2

@x2
: �16�

For subsystem 2, the equations of motion can be rewritten in matrix operator

form,

M �W�G _W� KW � F, �17�
where

F � ff1�x, t�f2�x, t�f3�x, t�f4�x, t�f5�x, t�f6�x, t�gT �18�
and the displacement vector W is composed of the displacement of belt span 1,

belt span 2, three pulleys and the tensioner arm

W � fw1�x, t�w2�x, t�w1�t�w3�t�w3�t�w4�t�gT: �19�
The mass matrix operator M, gyroscopic matrix operator G, and stiffness matrix

operator K are de®ned, respectively, as

M �

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m1 0 0 0
0 0 0 m2 0 0
0 0 0 0 m3 0
0 0 0 0 0 m4

26666664

37777775, �20�

G �

2mc
@

@x
0 0 0 0 0

0 2mc
@

@x
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

ÿmc sinc1jl1 mc sinc2j0 0 0 0 0
0 0 0 0 0 0

2666666666664

3777777777775
, �21�
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K �

ÿPt1
@2

@x2
0 0 0 0 0

0 ÿPt2
@2

@x2
0 0 0 0

0 0 k1 � k3 ÿk1 ÿk1 cosc1 ÿk3
0 0 ÿk1 k1 � k2

k1 cosc1ÿ
k2 cosc2

ÿk2

Pt1 sinc1

@

@x

����
l1

ÿPt2 sinc2

@

@x

����
0

ÿk1 cosc1

k1 cosc1ÿ
k2 cosc2

k1 cos
2 c1�

k2 cos2 c2 � k4
k2 cosc2

0 0 ÿk3 ÿk2 k2 cosc2 k2 � k3

26666666666666666664

37777777777777777775

:

(22)

The presence of boundary terms in G and K appears to break skew or symmetry.
It should be emphasized that taking the inner product hW, KWi involves
integration terms by parts, which cancels with the non-zero boundary terms in G
and K. Therefore, the serpentine belt drive system operating at non-zero axial
belt speed constitutes a conservative gyroscopic system. The modal analysis of
discrete gyroscopic systems was studied extensively [15, 16]. A similar study of a
single axially moving span was conducted by Wickert and Mote [3] and their
analysis can be applied directly to subsystem 1. Thus, the modal analysis of
subsystem 1 will no longer be discussed in this paper. Instead, the focus of the
present study will be on subsystem 2. Since the serpentine belt drive system is a
hybrid system consisting of both discrete and continuous elements, a
combination of both Meirovitch's and Wickert's methods suggested by
Beikmann [13] is employed to formulate the eigenvalue problem and to evaluate
the properties of the eigensolutions.

To apply the methods of Meirovitch [15] and Wickert and Mote [3] to the
present continuous/discrete system, equation (17) should be cast in the ®rst order
form. De®ning the state vector and the excitation vector

U �
_W

W

� �
, Q�x, t� � F�x, t�

0

� �
, �23�

and matrix differential operators

A � M 0
0 K

� �
, B � G K

ÿK 0

� �
, �24�

equation (17) becomes

A _U� BU � Q: �25�
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Equation (25) is the canonical form of the equations of motion and its solution
satis®es the appropriate boundary conditions and initial conditions.
The inner product of two vectors Un and Ur is de®ned as

hUn ,Uri �
�1
0

� _w1n
�_w1r � w1n �w1r� dx�

�2
0

� _w2n
�_w2r � w2n �w2r� dx� _wwwTn �_wwwr � wwwTn �wwwr,

�26�
where the overbar denotes complex conjugation. With respect to this inner
product, the operators A and B satisfy several properties which are the
cornerstones of the subsequent analysis. First, operator A is symmetric, and B is
skew symmetric; namely,

hAUn , Uri � hUn , AUri, hBUn , Uri � ÿhUn , BUri: �27�
Second, operator A is positive de®nite for suf®ciently low transport speed.
Dynamic systems described by one symmetric and one skew-symmetric operator
are termed gyroscopic systems.

3. EIGENVALUES AND EIGENFUNCTIONS

The eigenvalue problem of subsystem 2 can be studied in the context of
gyroscopic dynamic systems when the equation of motion is cast in operator
form. The separable solution

U�x, t� � RefCCCn e
lntg �28�

leads to the eigenvalue problem

lnACCCn � BCCCn � 0, �29�
where ln and CCCn are complex. The eigensolutions satisfy several properties [13].
The eigenvalues are imaginary; namely, ln= ion , where on is the real oscillation
frequency. Furthermore, the eigenfunctions CCCn have the structure

CCCn � CCCR
n � iCCCI

n , �30�

CCCR
n �

ÿonfff
I
n�x�

fffR
n

( )
, CCCI

n�x� �
onfff

R
n �x�

fffI
n�x�

( )
: �31�

Here, fffn(x) is the normalized eigenfunction associated with the displacement
®eld which can be expressed as

fffn�x� � ff1n�x�f2n�x�ŵ1nŵ2nŵ3nŵ4ngT, �32�
where f1n and f2n are the normalized eigenfunctions of transverse displacements
w1(x, t) and w2(x, t). ŵ1n , ŵ2n , ŵ3n and ŵ4n are normalized eigenfunctions
associated with the displacement of discrete components. The eigenfunctions CCCn

satisfy the orthonormality relations
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hAcccR
n , ccc

R
mi � dnm , hAcccI

n , ccc
I
mi � dnm , hAcccR

n , ccc
I
mi � 0, �33�

hBcccR
n , ccc

R
mi � 0, hBcccI

n , ccc
I
mi � 0, hBcccR

n , ccc
I
mi � ondnm: �34�

Since the serpentine belt drive system is a hybrid system (part continuous and

part discrete), the usual approaches to solve the corresponding eigenvalue

problem are not applicable. Beikmann et al. [13] used Holzer's method to solve

the free vibration problems. Holzer's method involves two iteration loops: (1) an

``inner loop'' for the cyclic belt span/pulley, and (2) an ``outer loop'' for the

tensioner arm. Iteration solutions were employed in both the inner loop and the

outer loop and thus provide little indication of the effect of design parameters

on natural frequencies. In the following study, instead of using the iteration

solution, the direct solution method is used to derive the explicit exact

characteristic equation.

It is assumed that the motion is harmonic, that is

wi � ŵin e
iot�i � 1, 4�, wi�x, t� � fin�x� eiot, �i � 1, 2�: �35�

Substituting equations (10)±(12) and (35) into equations (7)±(9), eliminating eiot,

and putting those terms including ŵ3n on the right of the equations yields

�k1 � k3 ÿm1o2�ŵ1n ÿ k1ŵ2n ÿ k3ŵ4n � k1 cosc1ŵ3n , �36�

ÿk1ŵ1n � �k1 � k2 ÿm2o2�ŵ2n ÿ k2ŵ4n � �k2 cosc2 ÿ k1 cosc1�ŵ3n , �37�

ÿk3ŵ1n ÿ k2ŵ2n � �k2 � k3 ÿm4o2�ŵ4n � ÿk2 cosc2ŵ3n : �38�
The sum of equations (36)±(38) leads to

m1ŵ1n �m2ŵ2n �m4ŵ4n � 0: �39�
Inserting equation (39) into equations (36) and (38) and solving the resulting

equations leads to

ŵ1n �
1�m4

m2

� �
k2 � k3 ÿm4o2

� �
k1 cosc1 �

m4

m2
k1 ÿ k3

� �
k2 cosc2

D
ŵ3n , �40�

ŵ2n �
ÿm1

m2
k2 ÿm1 �m4

m2
k3 �m1m4

m2
o2

� �
k1 cosc1

D
ŵ3n

�
m4

m2
k1 �m1 �m4

m2
k3 ÿm1m4

m2
o2

� �
k2 cosc2

D
ŵ3n , �41�
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ŵ4n �
ÿ m1

m2
k2 ÿ k3

� �
k1 cosc1 ÿ 1�m1

m2

� �
k1 � k3 ÿm1o2

� �
k2 cosc2

D
ŵ3n , �42�

where

D � 1�m1

m2

� �
k1 � k3 ÿm1o2

� �
1�m4

m2

� �
k2 � k3 ÿm4o2

� �

ÿ m1

m2
k2 ÿ k3

� �
m4

m2
k1 ÿ k3

� �
: �43�

To capture the coupling between the transverse belt motion and the tensioner
arm rotation, general solutions for the transverse response of the belt spans must
be obtained. The solution form used here is the one presented by Sack [17]. For
belt span 1, the eigenfunction f

1n

(x) can be expressed as

f1n�x� � eiox=c
0
a �a1 sin�ox=c 01� � b1 cos�ox=c 01��, �44�

where the effective wave velocity c 01, the propagation speed c

1

of the transverse
wave, and the phase propagation velocity c 0a for span 1 are de®ned as

c 01 �
c21 ÿ c2

c1
, c1 �

�������
Po1

m

r
, c 0a �

c21 ÿ c2

c
: �45�

Using boundary conditions f

1n

(0)=0 and f1n�l1� � ŵ3n sinc1 to determine the
integration constants in the eigenfunction expression (44) leads to

a1 � eÿiol1=c
0
a sinc1

sin�ol1=c 01�
ŵ3n , b1 � 0: �46�

Similarly, for span 2, the eigenfunction can be expressed as

f2n�x� � eiox=c
0
b �a2 sin�ox=c 02� � b2 cos�ox=c 02��, �47�

where the effective wave velocity c 02, the propagation speed c

2

of transverse
wave, and the phase propagation velocity c 0b for span 2 are de®ned as

c 0b �
c22 ÿ c2

c
, c 02 �

c22 ÿ c2

c2
, c2 �

�������
Po2

m

r
: �48�

Applying the boundary condition that f2n�0� � ŵ3n sinc2 and f

2n

(l

2

)=0, the
integration constants in equation (47) can be obtained:
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a2 � ÿ sinc2 cot�ol2=c 02�ŵ3n , b2 � sinc2ŵ3n : �49�

Substituting equations (40)±(42), (44) and (47) into the equation of motion for

the tensioner arm, equation (13), yields the characteristic equation for

eigenvalues of the system

Pt1 sin
2 c1 cot�ol1=c 01�o=c 01 � Pt2 sin

2 c2 cot�ol2=c 02�o=c 02 � k1 cos
2 c1

� k2 cos
2 c2 � k4 ÿm3o2

�
�k1 cosc1 ÿ k2 cosc2�2 ÿ

m1 �m2 �m4

m2
k3 �m1m4

m2
o2

� �
D

�

k21 cos
2 c1 ÿ

m1 �m2 �m4

m2
k2 �m4o2

� �
�k22 cos2 c2 ÿ

m1 �m2 �m4

m2
k1 �m1o2

� �
D

� 0: �50�

From this equation, it is not dif®cult to study the effect of different parameters

on eigenvalues of the system. For the rotationally dominant modes, since the

®rst two terms on the left side of the characteristic equations are much smaller

than the remaining terms, the natural frequencies are mainly determined by the

axial stiffness, masses and tensioner arm orientation. Therefore, the natural

frequencies should be weak functions of the translating speed. For transversely

dominant modes, since cot�ol1=c 01� or cot�ol2=c 02� is very large, the natural

frequencies are mainly determined by the span tension and the translating speed.

Thus, the natural frequencies are expected to decrease signi®cantly with the

speed. For the lower order transversely dominant modes, the axial stiffness,

masses and tensioner arm orientation have some effect on the natural

frequencies while for the higher order modes, the natural frequencies are almost

independent on masses of the discrete components and the tensioner arm

orientation.

The characteristic equation (50) is a non-linear equation which can be solved

numerically. The approach proposed for the analysis of the three-pulley system

is readily extended to more complex belt drive systems involving multiple

accessories.

After having eigenvalues of the system, the corresponding eigenfunctions can

be obtained by substituting these eigenvalues into equations (40)±(42), (44) and

(47). It is noted that both the amplitudes and the shapes of the complex

eigenfunctions of the belt spans and the amplitudes of the real eigenvectors of

the discrete components depend on the normalization.
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4. RESPONSE TO ARBITRARY EXCITATION

The response of a single belt subjected to general excitations and initial
conditions was obtained by Wickert and Mote [3]. In this study, the modal
analysis method for a single belt is extended to the hybrid subsystem 2 while the
response of subsystem 1 can be directly calculated using the results given in
reference [3].
Consider the expansion

U �
X1
n�1

xRnccc
R
n � xInccc

I
n �51�

as the solution of equation (25). The components xRn �t� and xIn�t� of the
generalized co-ordinates are real, and it is assumed that the expansion is
complete. Substituting equation (51) into (25), forming an inner product with
�cccR

n ccc1
n� and using the orthonormality conditions leads to the following

equations of motion for modal co-ordinates:

xRn ÿ onx
I
n � qRn �t�, xIn � onx

R
n � qIn�t�, �52�

where

qRn �t� � ÿon

�l1
0

fI
1n f1�x, t� dxÿ on

�l2
0

fI
2n f2�x, t� dx, �53�

qIn�t� �on

�l1
0

fR
1n f1�x, t� dx� on

�l2
20f

R
2n f2�x, t� dx

� onŵ1n f3�t� � onŵ2n f4�t� � onŵ3n f5�t� � onŵ4n f6�t�: �54�
The solutions of equation (52) are given as

xRn �t� �
�t
0

�qRn s� cos�on�tÿ s�� � qIn�s� sin�on�tÿ s��� ds

� xRn �0� cos�ont� � xIn�0� sin�ont�, �55�

xtn�t� �
�t
0

�qtns� cos�on�tÿ s�� ÿ qRn �s� sin�on�tÿ s��� ds

� xIn�0� cos�ont� ÿ xRn �0� sin�ont�, �56�

where the initial values of the modal co-ordinates are

xRn �0� � hAU0, CCCR
n i, xIn�0� � hAU0, CCCI

ni: �57�

Following equation (51), the ®eld variable expansion becomes
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W �
X1
n�1

�Rn �
R
n � �In�In: �58�

5. STEADY STATE RESPONSE SUBJECTED TO HARMONIC EXCITATION

In the previous section, the response of serpentine belt drive systems to
arbitrary excitation is obtained using the eigenfunction expansion method. This
result is obviously applicable to the steady state response of the system subjected
to non-resonance harmonic excitations. However, since the expression is in terms
of the linear mode shapes, it would be very dif®cult to use in the direct
perturbation analysis for non-linear systems. An explicit exact expression for the
steady state response is still preferred.

Assume that the harmonic excitations are in the form

F � f f1�x, t� f2�x, t� f3�x, t� f4�x, t� f5�x, t� f6�x; t�gT eiot, �59�
where o is the excitation frequency. The steady state response of the system is
also harmonic with the same oscillation frequency,

W � fF1�x�F2�x�~w1~w2~w3~w4gT eiot: �60�
Substituting equations (59) and (60) into the equation of motion of belt span 1
and eliminating e

iot
yields the two-point boundary-value problem

ÿmo2F1�x� � 2iomc
dF1�x�
dx

ÿ Pt1
d2F1�x�
dx2

� f1�x�, �61�

F1�0� � 0, F1�l1� � ~w3 sinc1: �62�
The general solution of equation (61) is

F1�x� � eiox=c
0
a �a1 sin�ox=c 01� � b1 cos�ox=c 01�� � F̂1�x�, �63�

where F̂1�x� is the particular solution of equation (61). Applying boundary
conditions (62), the integration constants in equation (63) can be obtained as

a1 � �~w3 sinc1 ÿ F̂1�l1�� eÿiol1
=c 0a � F̂1�0� cos�ol1=c 01�

sin�ol1=c 01�
, b1 � ÿF̂1�0�: �64�

Similarly, for span 2, the spatial dependence function is given as

F2�x� � eiox=c
0
b �a2 sin�ox=c 02� � b2 cos�ox=c 02�� � F̂2�x�, �65�

with boundary conditions

F2�0� � ~w3 sinc2, F2�l2� � 0, �66�
where F̂2�x� is the particular solution. The integration constants a

2

and b
2

are
obtained by using the boundary conditions
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a2 � ÿF̂2�l2� eÿiol2=c 0b
sin�ol2=c 02�

ÿ �~w3 sinc2 ÿ F̂2�0�� cot�ol2=c 02�, b2 � ~w3 sinc2 ÿ F̂2�0�:

�67�
Using equations (63) and (65) for the belt response in the equation of motion for

the tensioner arm, the terms in equation (13) involving w
1

and w
2

can be

simpli®ed as

ÿPt1w1,xjl1 �mcw1,tjl1 � ÿPt1 sinc1 cot�ol1=c 01�
o
c 01

~w3 � f7

� �
eiot, �68�

ÿPt2w2,xj0 �mcw2,tj0 � Pt2 sinc2 cot�ol2=c 02�
o
c 02

~w3 � f8

� �
eiot, �69�

where

f7 � ÿPt1o eiol1=c
0
aF̂1�0�

c 01 sin�ol1=c 01�
� iomc� Pt1 cot�ol1=c 01�

o
c 01

� �
F̂1�l1� ÿ Pt1F̂ 01�l1�, �70�

f8 � Pt2o eÿiol2=c
0
bF̂2�l2�

c 02 sin�ol2=c 02�
� iomcÿ Pt2 cot�ol2=c 02�

o
c 02

� �
F̂2�0� ÿ Pt2F̂ 02�0�: �71�

Inserting equations (68) and (69) into the equation of motion of the tensioner

arm, rewriting the resulting equation and the three equations of motion for the

pulleys into matrix form, and eliminating e
iot

leads to the algebraic equation

�KDD ÿMDDo2�
~w1
~w2
~w3
~w4

8>><>>:
9>>=>>; �

f3
f4

f5 � f7 sinc1 ÿ f8 sinc2

f6

8>><>>:
9>>=>>;, �72�

where

KDD �
k1 � k3 ÿk1 ÿk1 cosc1 ÿk3
ÿk1 k1 � k2 k1 cosc1 ÿ k2 cosc2 ÿk2

ÿk1 cosc1 k1 cosc1 ÿ k2 cosc2 k33 k2 cosc2

ÿk3 ÿk2 k2 cosc2 k2 � k3

2664
3775,
�73�

k33 � k1 cos
2 c1 � k2 cos

2 c2 � k4 � Pt1 sin
2 c1 cot�ol1=c 01�

o
c 01

� Pt2 sin
2 c2 cot�ol2=c 02�

o
c 02

, �74�
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MDD �
m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

2664
3775: �75�

Substituting the solution of equation (72) into equations (63) and (65), the
explicit exact expression for the response of the serpentine belt drive system is
derived. It is noted that the solution procedure does not involve eigenfunction
expansion. The solution in this form is very convenient to be used in the direct
perturbation analysis of the corresponding non-linear problem.

6. NUMERICAL RESULTS

In this section, numerical results of natural frequencies and the linear forced
vibration response of serpentine belt drive systems are presented. Effects of the
transport speed and the tensioner arm orientation on natural frequencies are
discussed.
Two prototypical systems simulated are identical to those proposed by

Beikmann et al. [13] where natural frequencies of the two systems were
calculated using the iteration approach. In this study, natural frequencies are
obtained directly from the characteristic equation and the response is calculated
from the exact closed-form expressions. The physical properties are shown in
Table 1. The baseline system has a ®rst rotationally dominant mode frequency
nearly twice that of the ®rst transverse mode of span 3. The modi®ed system is
identical to the ®rst, except for the addition of a 0�0758-kg mass to the tensioner
arm.
A comparison of natural frequencies among those obtained from experiment

[13], Holzer's method [13] and the approach proposed in the paper is shown in
Tables 2 and 3. It can be seen that correlation among the three methods is quite
good. The ®rst mode, for both systems, is dominated by span 3 vibration. Since
there is no coupling between the transverse vibration of span 3 and pulley
rotations, the change of properties of subsystem 2 does not alter the natural

TABLE 1

The physical properties for the prototypical systems

Pulley 1 Pulley 2 Tensioner arm Pulley 4

Spin axis (0�5525, 0�0556) (0�3477; 0�05715) (0�2508, 0�0635) (0�0, 0�0)
co-ordinates
Radii (m) 0�0889 0�0452 0�097 0�02697

Rotational inertia 0�07248 0�00293 0�001165 0�000293
(kg-m2)

Other physical Belt modulus: EA=170 000 N, m=0�1029 kg/m,
properties Tensioner spring constant: kr=54�37 N-m/rad,

Tensioner pulley mass: 0�302 kg (baseline), 0�378 kg (modified)
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frequency of span 3. This is demonstrated by the negligible difference in the
fundamental natural frequency of span 3 between the baseline and modi®ed
systems. The second mode is the vibration dominated by span 2. It has a
frequency of 50�53 Hz in the baseline system and 50�27 Hz in the modi®ed
system. The vibration mode of the baseline system is shown in Figure 2. The
third mode is dominated by the tensioner arm rotation. It has a natural
frequency of 62�18 Hz in the baseline system and 58�27 Hz in the modi®ed
system. This demonstrates the signi®cant effect of the mass on the natural
frequency of this mode. As predicated in the modal analysis, there is a signi®cant
coupling between the span's transverse vibration and the tensioner arm
rotational vibration, as shown in Figure 3.
The effect of the tensioner arm orientation on natural frequencies is shown in

Table 4. It can be seen that the tensioner arm orientation has a signi®cant effect
on the rotationally dominant mode while it has less effect on the transversely
dominant mode for zero speed. From the characteristic equation, it is seen that
the tensioner arm orientation affects the effective tensioner stiffness and the
coupling between the tensioner arm and the transverse span motion. Therefore,
the tensioner arm orientation in¯uences rotationally dominant modes
signi®cantly. With the increase of the translating speed, the tensioner arm

TABLE 2

Comparison of the natural frequency of the baseline system at zero speed

Mode Experimental Holzer's method
Characteristic

equation Dominant
No. (Hz) (Hz) (Hz) mode

1 33�0 32�03 32�03 1st mode, span 3
2 51�75 50�52 50�53 1st mode, span 2
3 62�5 62�22 62�18 1st rotational
4 N/A N/A 102�50 2nd mode, span 2
5 N/A N/A 114�19 1st mode, span 1
6 N/A N/A 153�75 3rd mode, span 2
7 N/A N/A 218�51 2nd mode, rotational

TABLE 3

Comparison of the natural frequency of the modified system at zero speed

Mode Experimental Holzer's method
Characteristic

equation Dominant
No. (Hz) (Hz) (Hz) mode

1 33�0 32�03 32�03 1st mode, span 3
2 51�5 50�52 50�27 1st mode, span 2
3 58�0 58�81 58�57 1st rotational
4 N/A N/A 102�50 2nd mode, span 2
5 N/A N/A 114�19 1st mode, span 1
6 N/A N/A 153�75 3rd mode, span 2
7 N/A N/A 203�19 2nd mode, rotational
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orientation will change the span tensions and thus will signi®cantly affect the
natural frequency of transversely dominant modes.
The effect of the translating speed on the natural frequencies of the single

moving belt has been studied extensively [7, 8, 11]. However, for the whole
serpentine drive system where the coupling between pulleys and belt spans exists,
this effect needs further consideration. Beikmann et al. [13] investigated this
effect using experimental and numerical methods. In this paper, the relations
between the translating speed and natural frequencies are obtained directly from
the characteristic equation, as shown in section 3. Figures 4 and 5 illustrate the
relation between natural frequencies and the engine speed for the baseline system
and the modi®ed system, respectively. Higher order transversely dominant mode
frequencies are not shown in Figures 4 and 5 since they are simply integer times
the ®rst transversely dominant mode frequency of span 1 or span 2. It is evident
that the natural frequencies of rotationally dominant modes remain nearly
constant while those of transversely dominant modes decrease with the speed.
These results agree very well with the conclusions by Beikmann et al. [13]. It is
noted that there are some irregularities for the second rotationally dominant
mode. This is because at some operating speeds, the frequency of a higher order
transversely dominant mode not shown in Figures 4 and 5 approaches that of
the second rotationally dominant mode. This phenomenon is termed ``curve
veering'' which indicates large and complementary changes in the associated
modes. From the characteristic equation (50), it can be seen that one of the ®rst
two terms on the left side of equation (50) becomes more signi®cant at curve
veering, resulting in some irregularities at some speeds.

Figure 2. Span 2 transversely dominant vibration mode of the baseline system: Ð, the baseline
sytem; � � � � � �, mode shape.

Figure 3. Tensioner arm rotationally dominant vibration mode of the baseline system: Ð, the
baseline system; � � � � � �, mode shape.



BELT DRIVE SYSTEMS 275

The steady state response of the serpentine belt system subjected to a
harmonic excitation is shown in Figures 6 to 8. The excitation is imposed on
pulley 4 with the amplitude of excitation 2�697 N-m and the excitation frequency
124�36 Hz. Figures 6 and 7 show 3-D diagrams for the response of spans 1 and 2
with respect to time t and space x and Figure 8 shows the response of discrete

TABLE 4

Effect of the tensioner arm orientation on the natural frequency (Hz) of the baseline system
at zero speed

(c1, c2)
Mode z���������������������������������������������������������������������������}|���������������������������������������������������������������������������{
No. (45�78�, 91�26�) (49�54�, 87�51�) (53�29�, 83�76�) (60�79�, 76�26�)
1 32�03 32�03 32�03 32�03
2 50�53 50�63 50�70 50�80
3 62�18 63�81 65�25 67�43
4 102�50 102�50 102�50 102�5-
5 114�19 114�19 114�19 114�19
6 153�75 153�75 153�75 153�75
7 218�51 219�54 219�41 219�67
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Figure 4. Natural frequencies of the baseline system: Ð, mode 1; � � � � � �, mode 2; - � - , mode 3;
- - -, mode 4; - � � � - � � �, mode 5; ± - ± -, mode 6.
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Figure 5. Natural frequencies of the modi®ed system: Ð, mode 1; � � � � � �, mode 2; - � -, mode 3;
- - -, mode 4; -� � �-� � �, mode 5; ± - ± -, mode 6.
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Figure 6. The steady state response of span 1.
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components. It is seen that the response of span 1 at x=0 is zero while it is not
equal to zero at the other end due to the coupling with the tensioner arm. The
response of span 2 at x=0 is not equal to zero. The response of the tensioner
arm is the biggest compared with that of other pulleys. It is noted that for the
linear model, when the excitation frequency is not equal to the natural frequency
of the system, the dynamic response is very small. However, for the non-linear
model, under the condition of the internal resonance, the response may be very
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Figure 7. The steady state response of span 2.
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Figure 8. The steady state response of discrete components: *, pulley 1; +, pulley 2; 6, ten-
sioner arm; ~, pulley 4.
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large.

7. CONCLUSION

The modal analysis of the linear prototypical serpentine belt drive system is
performed in this study. The entire system is divided into two subsystems:
subsystem 1 with belt span 3 only and subsystem 2 with other components. In
the linear analysis, the equations of motion of these two subsystems are
uncoupled. Therefore, it is convenient to deal with these two systems separately.
Although the eigenvalues and eigenfunctions of the prototypical system were

calculated in a previous study [13], it is not convenient to investigate the effects
of different parameters on eigenvalues since an iteration approach is employed in
reference [13]. In this paper, the explicit exact characteristic equation for
eigenvalues is derived without using the iteration approach. From the
characteristic equation (50), the following two conclusions about the effect of the
design parameters on natural frequencies can be drawn:

. The translating speed has a signi®cant effect on natural frequencies of
transversely dominant modes while it has less effect on those of rotationally
dominant modes. The natural frequencies of transversely dominant modes
decrease with the increase of translating speed.
. The tensioner arm orientation in¯uences natural frequencies of rotationally
dominant modes greatly. At lower translating speed, the effect of the tensioner
arm on transversely dominant modes is small. With the increase of the
translating speed, this effect also increases.

The response of the serpentine belt drive system subjected to arbitrary
excitations is represented as a superposition of orthogonal eigenfunctions. When
the excitations are non-resonance harmonic, the explicit exact solution without
using eigenfunction expansion is derived. This kind of expression is particularly
useful in the direct perturbation analysis of the corresponding non-linear
problems.
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